Remote sensing feature selection for alpine wetland classification
نویسندگان
چکیده
é«å¯æ¹¿å°æ¯éèé«åéè¦çå°è¡¨è¦çç±»åä¹ä¸ï¼å¯¹äºæ°´æºæ¶µå »ãè°èæ°åãç»´æ¤çç©å¤æ ·æ§çèµ·çå ³é®ä½ç¨ï¼åç¡®åæ¶è·ç¥é«å¯æ¹¿å°çæ¶ç©ºåå¸å¯¹äºæ¹¿å°çä¿æ¤å管çååå¿ è¦ã饿åç±»ç¹å¾ä¼é对湿å°å¶å¾å ·æå ³é®æ§çä½ç¨ãè½ç¶åå è°±ç¹å¾ã纹çç¹å¾ãå°å½¢ç¹å¾çåå¨å·²æç ç©¶ä¸ææ¶åï¼ä½é²æç ç©¶èç¦å è°±ææ°ç¹å¾ï¼æ·±å ¥æ¢è®¨å ¶æ°çç»è®¡ç¹å¾åç¹å¾ä¼éæ¹æ³ãæ¬ç 究以çè馿²é«å¯æ¹¿å°ä¿æ¤åºä¸ºç ç©¶åºï¼åºäºSentinel-2æ°æ®å¾å°ååç±»ç¹å¾ï¼å è°±ãæ¤è¢«ææ°ãçº¢è¾¹ææ°åæ°´ä½ææ°ï¼ï¼éç¨FilteråWrapperç¹å¾éæ©æ¹æ³å æ¬Jeffries-Matusitaè·ç¦»ãå è°±è§è·ç¦»ï¼SADï¼ã欧æ°è·ç¦»ï¼EDï¼ãRF-RFEç®æ³åRelief-Fç®æ³å¯¹ä¸è¿°ç¹å¾è¿è¡ä¼éï¼å¹¶å©ç¨Filteræ¹æ³çZæ£éªè¿è¡éåè¯ä»·ãç 究表æï¼ï¼1ï¼ææåä¸åç±»çç±»å«ä¸ï¼æ²³æµä¸è£¸å°æå®¹æåºåï¼å ¶æ¬¡ä¸ºèå䏿²¼æ³½ï¼æ²¼æ³½åèç¸ä¸èç¸è¾ä¸ºé¾åãå¯¹æ²¼æ³½ãæ²¼æ³½åèç¸ãèç¸ãèåé»è¿ä¸¤ç±»å¯å°è¯MCARI2ãNDWIãDVIãEVIãEWIãIRECIãMCARIãTCARIãUGWIææ°è¿è¡åºåï¼ï¼2ï¼å°±ä¸åææ°ç¹å¾å¯¹æ¹¿å°ä¿¡æ¯æåè´¡ç®ç¨åº¦èè¨ï¼æ°´ä½ææ°ç¹å¾>æ¤è¢«ææ°ç¹å¾>çº¢è¾¹ææ°ç¹å¾ï¼ï¼3ï¼ä»ç¹å¾ä¼éæ¹æ³è§åº¦çï¼Filteræ¹æ³ä¸çEDè·ç¦»ç®æ³ä¸ Relief-Fç®æ³è¡¨ç°çªåºï¼ï¼4ï¼æç»éåºéäºé«å¯æ¹¿å°ä¿¡æ¯æåçææ°æRDVIãNDVIãMSRãRVIãVIgreenãRNDWIãNDWIãNDWI_BãMNDWIãEWIãCIreï¼ï¼5ï¼ä»ä¸ååç±»ç¹å¾çæ°çç»è®¡ææ çï¼ä¸å¼ç¹å¾çåç±»ç»ææå¥½ï¼å ¶æ¬¡æ¯å¹³åå¼ç¹å¾ãæ¬ç 究为湿å°ä¿¡æ¯æåå¨ç¹å¾åéä¼éæ¹é¢æä¾äºä¸ç§å¯è¿ç§»ä¸æ®éæ§é«çæ¹æ³åæè·¯ã
منابع مشابه
Feature Selection Methods for Remote Sensing Images Classification
Different methods of feature selection are used to improve the performance of remote sensing images classification. In this work two methods of feature selection are examined. The first one is based on the discriminant analysis, and the second one rests on building the regression model. Histogram and textural features are considered as characteristics of an image. The experiments on the remote ...
متن کاملA GA-Based Feature Selection Algorithm for Remote Sensing Images
We present a GA–based feature selection algorithm in which feature subsets are evaluated by means of a separability index. This index is based on a filter method, which allows to estimate statistical properties of the data, independently of the classifier used. More specifically, the defined index uses covariance matrices for evaluating how spread out the probability distributions of data are i...
متن کاملTwo Effective Feature Selection Criteria for Multispectral Remote Sensing
In an earlier study, Swain et al. reported on two statistical separability measures which for multiclass feature selection were shown experimentally to be more reliable than divergence. However, the empirical results of that study together with the best theoretical results in the literature left open some practical questions regarding the quantitative characterization of these separability meas...
متن کاملOverlap-based feature weighting: The feature extraction of Hyperspectral remote sensing imagery
Hyperspectral sensors provide a large number of spectral bands. This massive and complex data structure of hyperspectral images presents a challenge to traditional data processing techniques. Therefore, reducing the dimensionality of hyperspectral images without losing important information is a very important issue for the remote sensing community. We propose to use overlap-based feature weigh...
متن کاملA Review of Wetland Remote Sensing
Wetlands are some of the most important ecosystems on Earth. They play a key role in alleviating floods and filtering polluted water and also provide habitats for many plants and animals. Wetlands also interact with climate change. Over the past 50 years, wetlands have been polluted and declined dramatically as land cover has changed in some regions. Remote sensing has been the most useful tool...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of remote sensing
سال: 2023
ISSN: ['1007-4619', '2095-9494']
DOI: https://doi.org/10.11834/jrs.20222080