Remote sensing feature selection for alpine wetland classification

نویسندگان

چکیده

é«˜å¯’æ¹¿åœ°æ˜¯é’è—é«˜åŽŸé‡è¦çš„åœ°è¡¨è¦†ç›–ç±»åž‹ä¹‹ä¸€ï¼Œå¯¹äºŽæ°´æºæ¶µå »ã€è°ƒèŠ‚æ°”å€™ã€ç»´æŠ¤ç”Ÿç‰©å¤šæ ·æ€§ç­‰èµ·ç€å ³é”®ä½œç”¨ï¼Œå‡†ç¡®åŠæ—¶èŽ·çŸ¥é«˜å¯’æ¹¿åœ°çš„æ—¶ç©ºåˆ†å¸ƒå¯¹äºŽæ¹¿åœ°çš„ä¿æŠ¤å’Œç®¡ç†ååˆ†å¿ è¦ã€‚é¥æ„Ÿåˆ†ç±»ç‰¹å¾ä¼˜é€‰å¯¹æ¹¿åœ°åˆ¶å›¾å ·æœ‰å ³é”®æ€§çš„ä½œç”¨ã€‚è™½ç„¶åƒå ‰è°±ç‰¹å¾ã€çº¹ç†ç‰¹å¾ã€åœ°å½¢ç‰¹å¾ç­‰å‡åœ¨å·²æœ‰ç ”ç©¶ä¸­æœ‰æ¶‰åŠï¼Œä½†é²œæœ‰ç ”ç©¶èšç„¦å ‰è°±æŒ‡æ•°ç‰¹å¾ï¼Œæ·±å ¥æŽ¢è®¨å ¶æ•°ç†ç»Ÿè®¡ç‰¹å¾å’Œç‰¹å¾ä¼˜é€‰æ–¹æ³•ã€‚æœ¬ç ”ç©¶ä»¥ç”˜è‚ƒé¦–æ›²é«˜å¯’æ¹¿åœ°ä¿æŠ¤åŒºä¸ºç ”ç©¶åŒºï¼ŒåŸºäºŽSentinel-2æ•°æ®å¾—åˆ°å„åˆ†ç±»ç‰¹å¾ï¼ˆå ‰è°±ã€æ¤è¢«æŒ‡æ•°ã€çº¢è¾¹æŒ‡æ•°å’Œæ°´ä½“æŒ‡æ•°ï¼‰ï¼Œé‡‡ç”¨Filter和Wrapperç‰¹å¾é€‰æ‹©æ–¹æ³•åŒ æ‹¬Jeffries-Matusitaè·ç¦»ã€å ‰è°±è§’è·ç¦»ï¼ˆSAD)、欧氏距离(ED)、RF-RFE算法和Relief-F算法对上述特征进行优选,并利用Filter方法的Zæ£€éªŒè¿›è¡Œé‡åŒ–è¯„ä»·ã€‚ç ”ç©¶è¡¨æ˜Žï¼šï¼ˆ1ï¼‰æ‰€æœ‰å‚ä¸Žåˆ†ç±»çš„ç±»åˆ«ä¸­ï¼Œæ²³æµä¸Žè£¸åœ°æœ€å®¹æ˜“åŒºåˆ†ï¼Œå ¶æ¬¡ä¸ºè‰åŽŸä¸Žæ²¼æ³½ï¼Œæ²¼æ³½åŒ–è‰ç”¸ä¸Žè‰ç”¸è¾ƒä¸ºéš¾åˆ†ã€‚å¯¹æ²¼æ³½ã€æ²¼æ³½åŒ–è‰ç”¸ã€è‰ç”¸ã€è‰åŽŸé‚»è¿‘ä¸¤ç±»å¯å°è¯•MCARI2、NDWI、DVI、EVI、EWI、IRECI、MCARI、TCARI、UGWI指数进行区分;(2)就不同指数特征对湿地信息提取贡献程度而言,水体指数特征>植被指数特征>红边指数特征;(3)从特征优选方法角度看,Filter方法中的ED距离算法与 Relief-F算法表现突出;(4)最终选出适于高寒湿地信息提取的指数有RDVI、NDVI、MSR、RVI、VIgreen、RNDWI、NDWI、NDWI_B、MNDWI、EWI、CIre;(5ï¼‰ä»Žä¸åŒåˆ†ç±»ç‰¹å¾çš„æ•°ç†ç»Ÿè®¡æŒ‡æ ‡çœ‹ï¼Œä¸­å€¼ç‰¹å¾çš„åˆ†ç±»ç»“æžœæœ€å¥½ï¼Œå ¶æ¬¡æ˜¯å¹³å‡å€¼ç‰¹å¾ã€‚æœ¬ç ”ç©¶ä¸ºæ¹¿åœ°ä¿¡æ¯æå–åœ¨ç‰¹å¾å˜é‡ä¼˜é€‰æ–¹é¢æä¾›äº†ä¸€ç§å¯è¿ç§»ä¸”æ™®é€‚æ€§é«˜çš„æ–¹æ³•å’Œæ€è·¯ã€‚

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Feature Selection Methods for Remote Sensing Images Classification

Different methods of feature selection are used to improve the performance of remote sensing images classification. In this work two methods of feature selection are examined. The first one is based on the discriminant analysis, and the second one rests on building the regression model. Histogram and textural features are considered as characteristics of an image. The experiments on the remote ...

متن کامل

A GA-Based Feature Selection Algorithm for Remote Sensing Images

We present a GA–based feature selection algorithm in which feature subsets are evaluated by means of a separability index. This index is based on a filter method, which allows to estimate statistical properties of the data, independently of the classifier used. More specifically, the defined index uses covariance matrices for evaluating how spread out the probability distributions of data are i...

متن کامل

Two Effective Feature Selection Criteria for Multispectral Remote Sensing

In an earlier study, Swain et al. reported on two statistical separability measures which for multiclass feature selection were shown experimentally to be more reliable than divergence. However, the empirical results of that study together with the best theoretical results in the literature left open some practical questions regarding the quantitative characterization of these separability meas...

متن کامل

Overlap-based feature weighting: The feature extraction of Hyperspectral remote sensing imagery

Hyperspectral sensors provide a large number of spectral bands. This massive and complex data structure of hyperspectral images presents a challenge to traditional data processing techniques. Therefore, reducing the dimensionality of hyperspectral images without losing important information is a very important issue for the remote sensing community. We propose to use overlap-based feature weigh...

متن کامل

A Review of Wetland Remote Sensing

Wetlands are some of the most important ecosystems on Earth. They play a key role in alleviating floods and filtering polluted water and also provide habitats for many plants and animals. Wetlands also interact with climate change. Over the past 50 years, wetlands have been polluted and declined dramatically as land cover has changed in some regions. Remote sensing has been the most useful tool...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of remote sensing

سال: 2023

ISSN: ['1007-4619', '2095-9494']

DOI: https://doi.org/10.11834/jrs.20222080